
POOR LEGIBILITY

ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

El Monte Operable Unit San Gabriel Valley Los Angeles County, California

Maness Project No. 51298

Your Environmental Construction & Transportation Partner

1101 East Spring Street, P.O. Box 90939 Long Beach, California 90809-0939 (562) 595-4555 • Fax (562) 492-6495 Contractor License No. 553633

FOURTH

THIRD QUARTER 1997 GROUNDWATER MONITORING REPORT

El Monte Operable Unit San Gabriel Valley Los Angeles County, California

Maness Project No. 51298

Prepared For:

Crown City Plating Company
4350 Temple City Boulevard, El Monte, California 91731

Prepared By:

Maness Corporation
1101 East Spring Street, Long Beach, California 90806

January 22, 1998

January 22, 1998

Maness Project No. 51298

Mr. Larry Donovan Crown City Plating Co. 4350 Temple City Boulevard El Monte, California 91731

RE: Report of Third Quarter 1997, Groundwater Monitoring at El Monte Operable Unit, San Gabriel Valley, Los Angeles County, California

Dear Mr. Donovan:

Enclosed please find Maness Corporation (Maness) third quarter 1997, groundwater monitoring report completed at the above referenced site.

In order to complete quarterly groundwater monitoring activities, Maness performed the following: (1) measured fluid levels, (2) purged and collected groundwater samples from two wells, (3) prepared a report summarizing field activities and laboratory analytical results.

If you have any questions or require additional information, please feel free to call me at (562) 595-4555.

Sincerely,

Maness Corporation

Fabriele Baader, REA Project Manager

cc: Bella Dizon, U.S. Environmental Protection Agency

Art Heath, Regional Water Quality Control Board (Los Angeles Region)

Sharon Wallen, Camp Dresser & McKee, Inc.

Kathryn Quinn, CH2MHILL

TABLE OF CONTENTS

1.0 IN	TRODUCTION Purpose and Scope of Work	1
1.1	Purpose and Scope of Work	1
		1
1.2	Background	1
2.0 FIE	LD ACTIVITIES	2
2.1	Groundwater Well Purging and Sampling	2
3.0 LA	BORATORY TESTING	3
3.1	Method of Analysis	3
3.2		3
3.3	Groundwater Sample Analytical Results	3
Tal	ole 1 - Summary of Groundwater Laboratory Analysis	4
4.0 SIT	E GEOLOGY AND HYDROGEOLOGY	5
Tal	ole 2 - Summary of Groundwater Depths	6
5.0 CO	NCLUSIONS	6
6.0 LIN	MITATIONS	7
Figures		

Figures

Figure 1 - Vicinity Map

Figure 2 - Site Map with Groundwater Monitor Well Locations

Appendices

- Appendix A Groundwater Sampling Logs
- Appendix B Laboratory and Quality Assurance/Quality Control Reports and Chain-of-Custody Records
- Appendix C Summary of Groundwater Laboratory Analytical Results

1.0 INTRODUCTION

This Third Quarter 1997, Groundwater Monitoring Report has been prepared by Maness Corporation (Maness) on behalf of the Crown City Plating Company (CCPC) for the CCPC site located at the El Monte Operable Unit, San Gabriel Valley, Los Angeles County, California (*Figure 1* and *Figure 2*).

1.1 PURPOSE AND SCOPE OF WORK

In order to complete groundwater monitoring activities, Maness performed the following:

- (1) measured fluid levels, (2) purged and collected groundwater samples from two wells,
- (3) prepared a report summarizing field activities and laboratory analytical results.

The objective of sampling monitoring wells MW2-3 and MW2-4 was to provide data to assess aquifer characteristics, groundwater flow direction and chemical quality of groundwater at the water table in the vicinity of the monitor wells.

1.2 BACKGROUND

The CCPC site is located in an industrial area in the western section of the City of El Monte, Los Angeles County, California. CCPC is located north of Valley Boulevard, south of Lower Azusa Road, east of Temple City Boulevard and west of Baldwin Avenue. The site occupies approximately 13 acres of land. Most of the site is owned by CCPC, the southernmost portion of the site is owned by Southern-Pacific Transportation Company (Southern-Pacific) and leased to CCPC. The site is located at the El Monte Operable Unit within the San Gabriel Valley Area 1 Superfund Site, as defined by EPA.

CCPC has operated a metal plating facility at the site since 1956. In 1977, CCPC leased a portion of the site from Southern-Pacific. Chemicals historically used at the site, as documented by EPA, included 1,1,1-Trichloroethane (1,1,1-TCA), toluene, wash thinner, cutting oil, sulfuric acid, nitric acid and sodium hydroxide.

VOCs have been detected at concentrations exceeding maximum contaminant levels (MCLs) in groundwater and in the San Gabriel Valley since 1979. In May 1984, the EPA assigned four areas of contamination located within the San Gabriel Valley to the National Priorities List. The CCPC is located within the El Monte Operable Unit, which is within an EPA Remedial Investigation Area where groundwater clean-up efforts are currently being focused.

Based on the analytical results of previous groundwater and soil investigations of areas in the vicinity of the site, several potentially hazardous chemical compounds have been identified: trichloroethylene (TCE), perchloroethylene (PCE), 1.1-dichloroethylene (1,1-DCE) and 1,1,1-trichloroethane (TCA).

In May 1990, the EPA issued a Notice of Potential Liability for the San Gabriel Valley Superfund sites to CCPC. In March 1995, the EPA submitted a Statement of Work to the Northwest El Monte Community Task Force as a basis for implementing an interim Remedial Investigation/Feasibility Study (RI/FS). This Statement of Work included specific locations for new monitoring wells to be installed as part of the overall interim RI/FS. A Special Notice was issued to CCPC on October 7, 1994.

On May 31, 1995, EPA issued a Unilateral Order to CCPC to independently sponsor the development and testing of two shallow groundwater monitoring wells included in the original Statement of Work submitted to the Northwest El Monte Community Task Force.

2.0 FIELD ACTIVITIES

2.1 GROUNDWATER WELL PURGING AND SAMPLING

On December 1, 1997, a Maness geologist collected groundwater samples from monitoring wells MW2-3 and MW2-4, respectively. Prior to purging and sampling, the depths to groundwater in the monitoring wells were measured using a Solinst electric sounding tape to determine the static water level, and hydraulic direction and gradient. This tape is specifically designed for use in sounding groundwater monitoring wells.

The Maness geologist purged the wells using a portable stainless steel Grundfos environmental electric submersible pump prior to the collection of the groundwater samples. During the purging of each well, the geologist periodically measured groundwater characteristics and recorded pH levels, temperature, conductivity, turbidity and pump rate readings (*Appendix A* - Groundwater Sampling Logs). After the removal of three times the well casing volume of water, enough time was allowed for groundwater to recharge to at least 80% of the measured static water level prior to the collection of water samples.

As required by the EPA, Maness recovered groundwater samples with a non-dedicated portable stainless steel Grundfos electric submersible pump and dedicated Teflon-lined sample tubing. The groundwater samples were collected from the pump discharge tubing and transferred into 40 ml VOA vials. Maness also obtained groundwater samples prior to purging MW2-4 with a bottom-emptying, polyethylene bailer. Well water from the bailer was also transferred into 40 ml VOA vials. The vials were labeled, sealed with custody seals and immediately placed on ice in a cooler until submitted to a state-certified laboratory for analysis (VOC Analytical Laboratories, Inc. of Glendale, California). In addition, Maness collected rinsate blanks from the pump before and after purging MW2-4. Trip blanks were obtained from the laboratory. Refer to *Appendix B* for a copy of laboratory and quality assurance/quality control (QA/QC) reports and chain-of-custody records.

Maness followed standard sampling procedures as outlined in the Field Sampling Plan by Hargis & Associates, Inc. dated November 6, 1995. The Grundfos pump was decontaminated prior to sampling by submerging in a non-phosphate detergent and tap water solution, and rinsed by pumping approximately 10 pump volumes of both tap water and distilled water through the mechanism. The exterior of the pump was rinsed with distilled water. All liquids generated during purging activities were recovered into 55-gallon DOT approved drums (80 gallons). CCPC transported the drums to their facility for recycling.

3.0 LABORATORY TESTING

3.1 METHOD OF ANALYSIS

Groundwater samples were collected, maintained, and prepared in accordance with <u>Test Methods for Evaluating Solid Waste</u>, (SW-846), Third Edition, Update #2, November 1990. These methods, as prescribed by the Environmental Protection Agency (EPA), provide test procedures which determine whether the sample is a hazardous waste.

VOC Analytical Laboratories, Inc. of Glendale, California, analyzed the groundwater samples for halocarbons using EPA Method 8010; and volatile aromatics and methyl-tert-butyl ether using EPA Method 8020.

3.2 CLEAN-UP CRITERIA

Clean-up levels for volatile organics in groundwater are based on the California Drinking Water Standards (CDWS). They are as follows:

- Ethylbenzene = 700 parts per billion (ppb)
- Benzene = 1 ppb
- Toluene = 150 ppb
- Tetrachloroethene = 5 ppb
- Total Xylene Isomers = 1,750 ppb

3.3 GROUNDWATER SAMPLE ANALYTICAL RESULTS

Benzene (3.1 ppb at MW2-4 and 2.3 ppb at MW2-3) was the only VOC above MCLs stated in CDWS.

Third Quarter 1997, Groundwater Monitoring Report

Figure 2 is a site map showing groundwater monitoring well locations with a summary of the sample analytical results. Table 1 summarizes the groundwater analytical results from the third quarter sampling event. The laboratory reports and chain-of-custody records for the groundwater sampling have been included in Appendix B. A summary of previous sampling events is summarized in Appendix C.

Summary of Groundwater Laboratory Analysis
El Monte Operable Unit, Partial Remedial Investigation
San Gabriel Valley, Los Angeles, California
Sample Date - 12/01/97

TABLE 1

Analytes (ppb)	EPA Method	MW2-3 (ppb)	MW2-4* (ppb)	MW2-4 (ppb)	R1 (ppb)	R2 (ppb)	MCL (ppb)
(ppo)	Ivictitou	(рро)	(ppo)	(рро)	(ppo)	(ppo)	(ppo)
Benzene	8020	2.3	ND	3.1	5.2	2.9	1
Bromoform	8010	ND	ND	ND	2.0	ND	Unregulated
Bromodichloromethane	8010	ND	ND	ND	1.1	ND	Unregulated
Chloroform	8010	ND	ND	ND	ND	ND	Unregulated
Dibromochloromethane	8010	ND	ND	ND	2.5	ND	Unregulated
Ethylbenzene	8020	2.5	ND	3.0	4.2	3.0	700
MTBE	8020	ND	ND	ND	ND	ND	Unregulated
Toluene	8020	4.1	ND	5.1	7.5	4.5	150
Tetrachloroethene	8010	0.61	ND	ND	ND	ND	5
Total Xylenes	8020	14	ND	16	22	16	1,750
Trichloroethene	8010	ND	ND	ND	ND	ND	Unregulated

Notes:

ppb = parts per billion (μ g/L)

MCL = primary and secondary maximum contaminant levels. California Drinking Water Standards (1994)

ND = not detected at or above laboratory detection limits

bold = above MCL

R1 = rinsate sample before purging MW2-4
R2 = rinsate sample after purging MW2-4
MW2-4* = sample taken before purging

MTBE = methyl-tert-butyl ether

Remaining analytes ND

4.0 SITE GEOLOGY AND HYDROGEOLOGY

The subject site is located in the northeastern block portion of the Los Angeles Basin. The northeastern block is situated between the Whittier fault zone and the base of the San Gabriel Mountains and is separated from the northwestern block by the Raymond Hill fault. This block is a deep synclinal basin that contains mostly marine Cenozoic sedimentary rocks, but includes some thick Miocene volcanic rocks in the east. The basement lies as much as 12,000 feet below the surface in the central part of the San Gabriel Valley, and in the eastern Puente Hills more than 22,000 feet of Cenozoic sedimentary rock covers the basement (from: Geology of California, Robert M. Norris and Robert W. Webb, 1990).

The subject site overlies alluvial sediments consisting of mainly moderate yellowish brown, medium- to coarse-grained sand to very dark grayish brown, fine-grained silty sand. The surrounding topography is consistently flat.

According to the Los Angeles County Department of Public Works (DPW) hydrologic records, the first recorded groundwater for the surrounding area as of April 30, 1996, is approximately 37.8 feet below land surface with a ground surface elevation of approximately 256.5 feet above mean sea level (MSL) (DPW Well 2942G, located at the intersection of Flair Drive and Strang Avenue, approximately ¼ mile southeast of monitor well MW2-3 and ¼ mile southwest of monitor well MW2-4).

Maness encountered groundwater in monitoring wells MW2-3 and MW2-4 at 35.15 and 39.46 feet below grade (ft bg), respectively, during the sampling event in December 1997. During the field investigation in September 1997, Maness encountered groundwater in monitoring wells MW2-3 and MW2-4 at 34.70 and 38.34 ft bg, respectively. In order to determine the exact depth to groundwater with respect to mean sea level, Gilbert Engineering of Cypress, California, surveyed the top of each well casing on February 21, 1997.

TABLE 2

SUMMARY OF GROUNDWATER DEPTHS EL MONTE OPERABLE UNIT, PARTIAL REMEDIAL INVESTIGATION SAN GABRIEL VALLEY, LOS ANGELES, CALIFORNIA

Well No.	Date	Well Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
MW2-3	5/29/97	257.045	34.30	222.75
	9/4/97		34.70	222.35
	12/1/97		35.15	221.90
MW2-4	5/29/97	264.30	37.40	226.90
	9/497		38.34	225.96
	12/1/97		39.46	224.84

5.0 CONCLUSIONS

Maness has completed the Third Quarter 1997, groundwater monitoring activities in El Monte and Rosemead, Los Angeles County, California for Crown City Plating Company located at 4350 Temple City Boulevard in El Monte, California. Groundwater monitoring assessed the groundwater quality associated with the El Monte Operable Unit (OU) area in the San Gabriel Valley, Los Angeles County, California.

Maness purged and sampled two groundwater monitoring wells in the southernmost portion of the El Monte OU. Benzene (3.1 ppb at MW2-4 and 2.3 ppb at MW2-3) was the only compound above MCL stated in CDWS. However, benzene was not detected in MW2-4 when sampled prior to purging.

Halocarbons and volatile aromatic concentrations have decreased since the last sampling event. Chloroform and trichloroethene compounds were not detected at or above laboratory detection limits.

Based on previous sampling events and the results of Third Quarter 1997, Maness recommends continuation of quarterly groundwater monitoring events.

6.0 LIMITATIONS

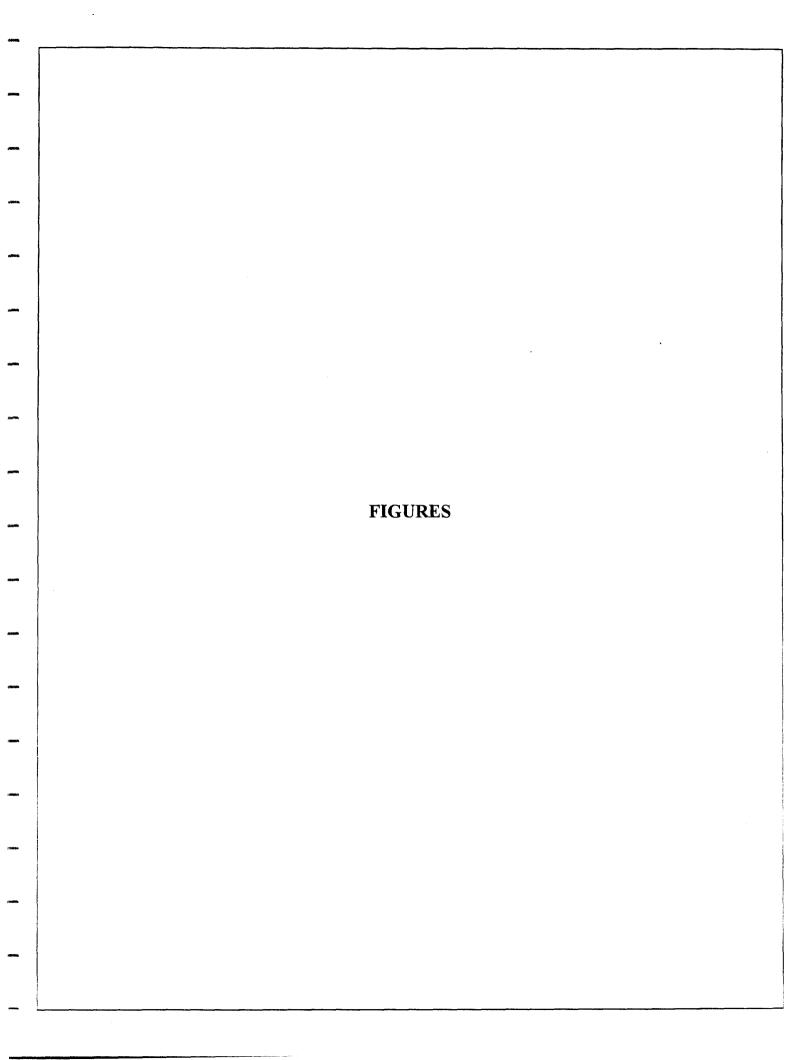
Maness Corporation (Maness) performs professional services using that degree of care and skill ordinarily exercised by environmental consultants practicing in this or similar localities. The findings are based primarily upon analytical results provided by an independent laboratory. Interpretations of the subsurface conditions at the site, for the purpose of this investigation, are made from a limited number of available data points (example: groundwater samples) and subsurface conditions may be different in other locations. No warranty, expressed or implied, is made as to the professional recommendations in our reports.

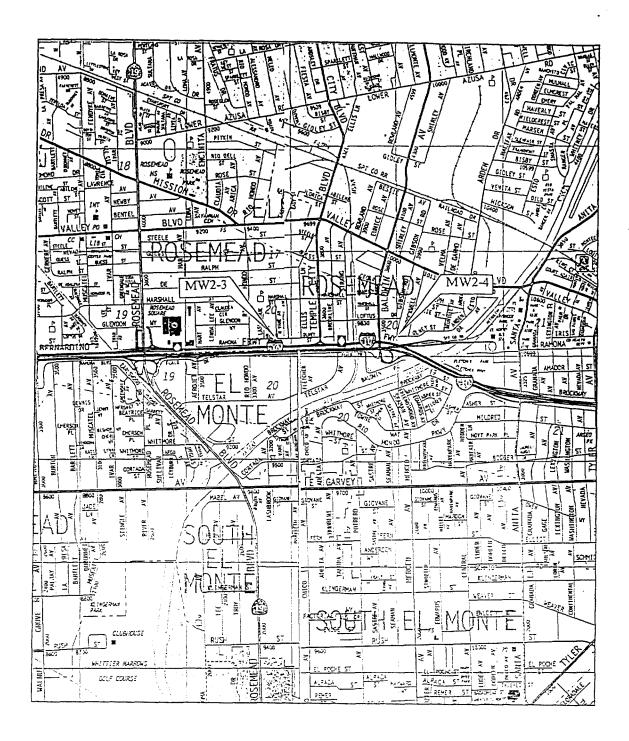
Maness appreciates the opportunity to provide environmental management services for Crown City Plating Co. If you have any questions regarding the report or require additional information, please call us at (562) 595-4555.

Sincerely,

Maness Corporation

Jeff Engels Geologist Gary Runnells, RG, REA Manager, Remediation Services


Gang Runnella

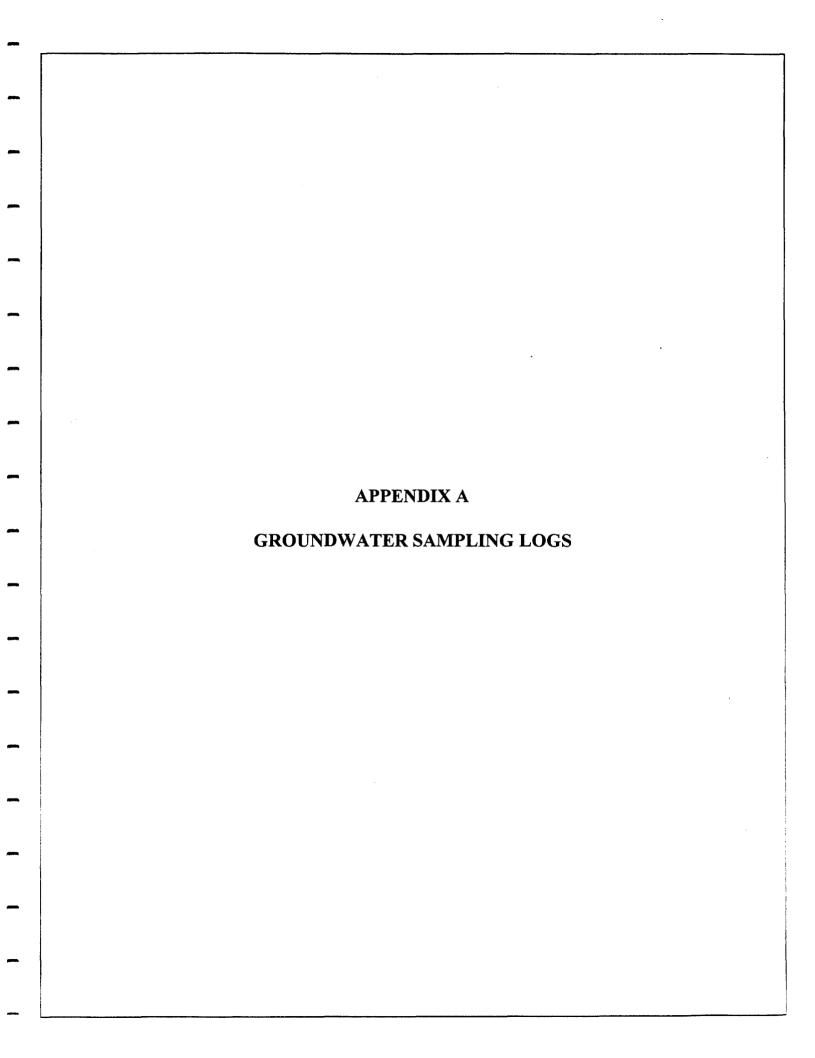

fabriele Baader, REA Project Manager

\crowncpc\crwn0198.qfm

REFERENCE

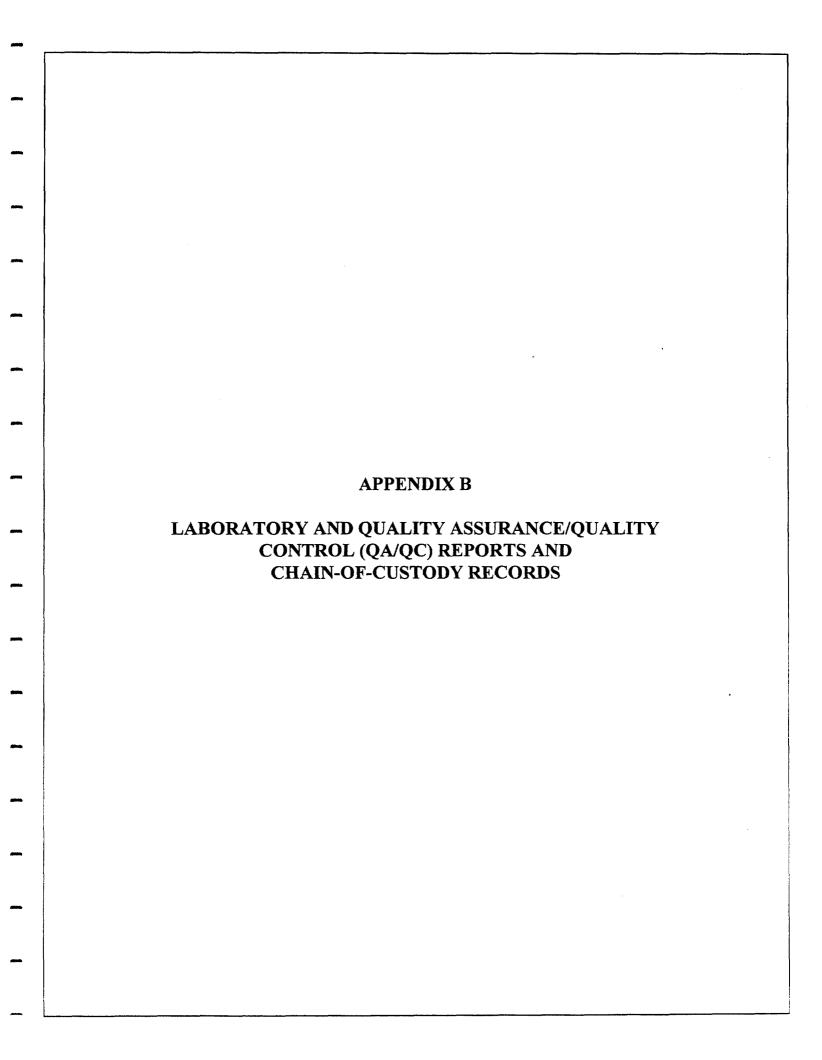
Thomas Bros. Maps The Thomas Guide, 1997 Los Angeles Orange Counties p. 596, J-7, 597, A-7 FIGURE 1 VICINITY MAP

El Monte Operable Unit San Gabriel Valley Los Angeles County, California


MANESS

A DIVISION OF

MANESS INDUSTRIES


OF EATHERS STREET, ORDINAL (NO BEAGL C. NEOF-917

PORTUGENS LICENSE ANSHOLING (NO BEAGL C. NEOF-917)

WEL	L No.	SITE NAM		YPLATING C	O M PANY	DATE:			pH/Temp/C	onductivity Mete	r: Tu	rbidimeter:
MW	['] 2-3	ADDRESS				-	12/1/97			0 Cond/Temp/Turb	Horiba I Digital p	L-10 H/Cond/Temp/Turb-
		North Var	ic Avenue & Ol	ney Street, Rose	emead, CA				Meter		Meter	
			GR	OUNI	DWA	TER	SAM	[PI	ING	LOG		
Time	Volume	рΗ	Conductivity	Temperature	Turbidity	Pump Rate			SOI	LUTION STA	NDARDS	
	Bailed (gallons)	P	(mS/cm)	(°C)	(NTU)	(gpm)		1	ρΗ		CONDU	CTIVITY
14:03		-start j	numn				BRAND NAM	IE: _{CAL} H: _{4.0}	ITECH Auto-C	Cal	BRAND NAME:	CALITECH Auto-Calibration
14:07	<1	6.84	1.07	19.1	10	0.7	BRAND NAM	1F ·			SOLUTION:	Potassium Hydrogen
14:14	5	6.78	1.22	21.1	6	0.6		H:		co	NCENTRATION:	Phthalate 4.49 mS/cm
14:22	10	6.77	1.20	21.4	4	0.8						4.49 M3/CM
14:28	15	6.78	1.22	21.3	10	0.6	BRAND NAM					
14:36	20	6.80	1.13	21.1	5	0.8	F	H:				
14:43	25	6.78	1.19	21.3	7	0.7						
14:52	30	6.84	1.12	20.6	8	0.6		1	NSTRUME	NT CALIBRA	ATION RECO	RD
14:58		-քսուր	stops, wait	for recharg	e			77			COMPLICED	UTTO (LEOTEC)
15:11		-start	-1 -	20.0		0.0		pН	RECORL	DING:		VITY (MOHS)
15:17	35	6.83	1.22	20.8	10	0.3	START UP:	4			START UP:	RECORDING:
15:25	38	6.79	1.17	21.2	3	0.05					•	
								7			ION	
								10	;	O-CALIBE	ZATIO	
							END:	4		Chr	END:	RECORDING:
Remarks:	Purged v	water at 5 ga	illons is slight	ly cloudy. At	38 gallons pu	ırged			U1()		
	water is							7	r			
Depth to	Bottom of	Well:	Rela	ıtive Rechai	ge Rate (ci	ircle one)	1	10				
- v _F v	(feet)	54	3.24' $slov$			•		10				
	ox Elevation mean sea lev		h to Ground (feet)	water Gro	undwater E above mean	Elevation	Sampler No. Jeff En				MAN	
257	.045'	3	35.15'	22	21.90'		Signature:	{ W			A DIVIS MANESS IN 01 EAST SPRING STREET, P.O.BO	

WELL	L No.	SITE NAI		Y <i>PLATIN</i> G C	OMPANY	DATE:			pH/Ten	p/Conductivity l	Meter:	Tu	rbidimeter:
MW	72-4	ADDRE	SS:				12/1/97		Horiba Digital Meter	U-10 pH/Cond/Temp/1		Horiba l Digital p Meter	U-10 bH/Cond/Temp/Turb-
		Gill	son Road & Oh	ey Street, El A	tonte, CA							1,10,0,	
	College of the Colleg	ere sen kenss selfen skriv	GR	OUNI	\overline{DWA}	TER	SAM	IPL	IN	G LO	3		
Time	Volume	pН	Conductivity	Temperature	Turbidity	Pump Rate	:			SOLUTION S	TANDAR	DS	
	Bailed (gallons)	P	(mS/cm)	(°C)	(NTU)	(gpm)		P	H			CONDU	CTIVITY
10:07	.1	-start p	_	157	10	1.2		oH: 4.0	ITECH A	sto-Cal		D NAME: LUTION:	CALITECH Auto-Calibration Potassium Hydrogen
10:26 10:30	<1 5	6.48 6.74	1.34 1.26	15.7 20.3	10 10	1.3 1.3	BRAND NAM	tE: oH:			CONCENT	DATION.	Phthalate
10:35	10	6.80	1.26	20.3	10	1.0	ĺ				CONCENT	KATION:	4.49 mS/cm
10:33	15	6.82	0.939	18.1	10	0.8	BRAND NAM	(E:					
10:49	20	6.77	1.25	20.3	38	1.3	P	H:					
10:54	25	6.82	1.23	19.0	59	1.0							
11:00	30	6.82	1.24	20.2	10	0.8		I	NSTRU	MENT CALI	BRATION	RECO	RD
11:08	35	6.71	1.24	20.3	16	0.6		77			((0)	ID I CORN	WTW (MANG)
11:14	38	6.80	1.28	19.7	10	0.05		pН	REC	ORDING:		_	VITY (MOHS)
							START UP:	4			STAR		RECORDING:
								7				M	
								10		TO-CAL	BRATI	Oliv	
							END:	4		Chr	EN	D:	RECORDING:
Remarks:			allons is slight	ly cloudy. Pu	rged water at			7	N.	10			
	38 gallo	ns is clear.				· · · · · · · · · · · · · · · · · · ·		/	•				
Depth to	Bottom of (feet)	<i>Well:</i> 55	5.14' Rela	itive Recha v modera	rge Rate (ci	•		10					
	ox Elevatio		th to Ground	water Gro	undwater L	Elevation	Sampler N	ame:		Λ Λ	'n	# A 3	maa
(feet above	mean sea lev	vel)	(feet)	(fee	t above mean	sea level)	Jeff En	igels			Λ		VESS
264	1.30'		39.46'	2	24.84'		Signature:	1 S~	1		1101 EAST SPRE	A DIVIS MANESS II NG STREET, P.O.B	ORATION SION OF NDUSTRIES 100 5993, LONG BEACH, CA. 90809 13. (310) 593-4555 FAX (310) 692-6895

ANALYTICAL REPORT

Our Quality Control Is Your Quality Assurance

LOG NO: G97-12-071

Received: 03 DEC 97

Mailed:

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

Project: 51298

REPORT OF A	NALYTICAL	RESUL 15
-------------	-----------	----------

Page 1

LOG NO	SAMPLE DESCRIPTION	N, AQUEOUS S	SAMPLES		D/	ATE SAMPLED
12-071-1 12-071-2 12-071-3 12-071-4 12-071-5	R1 R2 MW2-4A MW2-4 MW2-3					01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97
PARAMETER		12-071-1	12-071-2	12-071-3	12-071-4	12-071-5
Methyl-ter Surrogates a,a,a-Tri	zed actor, Times t-butylether, ug/L		1 <30 49.2	1 <30 41.1	12/10/97 1 <30 54.4 50.0	12/10/97 1 <30 50.2 50.0

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

	REPOR	RT OF ANAL	YTICAL RESU	_TS		Page 2
LOG NO S	AMPLE DESCRIPTION, A	AQUEOUS SAI	MPLES		DA	TE SAMPLED
12-071-4 M						01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97
PARAMETER		12-071-1	12-071-2	12-071-3	12-071-4	12-071-5
1,1,2,2-Tetr 1,1,2-Trichl 1,1-Dichloro 1,1-Dichloro 1,2-Dichloro 1,2-Dichloro 1,3-Dichloro 1,4-Dichloro Bromodichlor Bromomethane Bromoform, u Chlorobenzen Carbon Tetra Chloroform, Chloromethan	ed med ctor, Times coroethane, ug/L cachloroethane, ug/L cethane, ug/L comethane, ug/L comethane, ug/L comethane, ug/L cethoride, ug/L	12/12/97 12/12/97 12/12/97 1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <1 <1 <1 2.0 <0.5 <1 <1 <1 2.0 <0.5 <1 <1 <1 2.0 <0.5	12/12/97 12/12/97 12/12/97 1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5	12/12/97 12/12/97 12/12/97 1	12/13/97 12/13/97 12/13/97 1	

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

REPORT	T OF ANAL	YTICAL RESU	LTS		Page 3
LOG NO SAMPLE DESCRIPTION, AC	QUEOUS SAI	MPLES		DA	TE SAMPLED
12-071-1 R1 12-071-2 R2 12-071-3 MW2-4A 12-071-4 MW2-4 12-071-5 MW2-3					01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97
PARAMETER	12-071-1	12-071-2	12-071-3	12-071-4	12-071-5
Freon 113, ug/L Methylene chloride, ug/L Trichloroethene, ug/L Trichlorofluoromethane, ug/L Tetrachloroethene, ug/L Vinyl chloride, ug/L cis-1,2-Dichloroethene, ug/L cis-1,3-Dichloropropene, ug/L trans-1,2-Dichloroethene, ug/L trans-1,3-Dichloropropene, ug/L Surrogates ** Bromochloromethane Reported, ug, Bromochloromethane Theoretical, ug/L	<2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5	<2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.8 50.0	<2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<2 <0.5 <0.5 0.61 <0.5 <0.5 <0.5 <2 <0.5

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

REPOR	T OF ANAL	YTICAL RESU	JLTS		Page 4
LOG NO SAMPLE DESCRIPTION, A	QUEOUS SA	MPLES		D	ATE SAMPLED
12-071-1 R1 12-071-2 R2 12-071-3 MW2-4A 12-071-4 MW2-4 12-071-5 MW2-3					01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97 01 DEC 97
PARAMETER	12-071-1	12-071-2	12-071-3	12-071-4	12-071-5
		12/12/97 12/12/97 1 <0.5 <0.5 <0.5 2.9 <0.5 3.0 4.5 16	12/12/97 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	12/13/97 12/13/97 12/13/97 50.5 <0.5 <0.5 <0.5 \$ 3.1 \$ <0.5 3 3.0 \$ 5.1 \$ 16	12/13/97 1 <0.5 <0.5 <0.5 2.3 40.5 2.2 2.5 30 4.1 71 50.4

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

	REPORT OF ANALYT	ICAL RESULTS	Page 5
LOG NO SAMPLE D	ESCRIPTION, AQUEOUS SAMP	LES	DATE SAMPLED
12-071-6 T1			01 DEC 97
PARAMETER		12-071-6	
MTBE (8020) Date Analyzed Dilution Factor, Ti Methyl-tert-butylet Surrogates ** a,a,a-Trifluorotol a,a,a-Trifluorotol	her, ug/L uene Rep., ug/L	12/09/97 1 <30 54.5 50.0	

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

Project: 51298

	REPORT OF ANAL'	YTICAL RESULTS	Page 6
LOG NO	SAMPLE DESCRIPTION, AQUEOUS SAM	MPLES	DATE SAMPLED
12-071-6	T1		01 DEC 97
PARAMETER		12-071-6	
Halocarbons			
Date Analy	/zed	12/13/97	
Date Confi	irmed	12/13/97	
Dilution F	actor, Times	1	
1,1,1-Tric	chloroethane, ug/L	<1	
1,1,2,2-Te	etrachloroethane, ug/L	<1	
1,1,2-Tric	chloroethane, ug/L	<1	
1,1-Dichlo	proethane, ug/L	<1	
1,1-Dichlo	proethene, ug/L	<0.5	
1,2-Dichlo	proethane, ug/L	<0.5	
	probenzene, ug/L	<0.5	
1,2-Dichlo	propropane, ug/L	<0.5	•
1,3-Dichlo	probenzene, ug/L	<1	
1,4-Dichlo	probenzene, ug/L	<1	
Bromodich T	loromethane, ug/L	<0.5	
Bromometha	ane, ug/L	<1	
Bromoform,	, ug/L	<0.5	
Chlorobenz	zene, ug/L	<0.5	
Carbon Tet	trachloride, ug/L	<1	
Chloroetha	ine, ug/L	<0.5	
Chloroform	n, ug/L	<1	
Chlorometh	nane, ug/L	<1	
Dibromoch?	loromethane, ug/L	<0.5	
Freon 113,		<2	
Methylene	chloride, ug/L	<2	
Trichloroe	ethene, ug/L	<0.5	
Trichlorof	fluoromethane, ug/L	<0.5	

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

	REPORT OF ANALYTIC	CAL RESULTS	Page 7
LOG NO	SAMPLE DESCRIPTION, AQUEOUS SAMPLE	ES	DATE SAMPLED
12-071-6	T1		01 DEC 97
PARAMETER		12-071-6	
Vinyl chl cis-1,2-D cis-1,3-D trans-1,2 trans-1,3 Surrogate Bromochl	roethene, ug/L oride, ug/L ichloroethene, ug/L ichloropropene, ug/L -Dichloroethene, ug/L -Dichloropropene, ug/L s ** oromethane Reported, ug/L oromethane Theoretical, ug/L	<0.5 <0.5 <0.5 <0.5 <2 <0.5 53.5 50.0	

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

	REPORT OF ANALY	TICAL RESULTS	Page 8
LOG NO	SAMPLE DESCRIPTION, AQUEOUS SAM	PLES	DATE SAMPLED
12-071-6	T1		01 DEC 97
PARAMETER		12-071-6	
Date Anal Date Conf Dilution 1,2-Dichl 1,3-Dichl 1,4-Dichl Benzene, Chloroben Ethylbenz Toluene,	irmed Factor, Times orobenzene, ug/L orobenzene, ug/L orobenzene, ug/L ug/L ug/L zene, ug/L ene, ug/L ug/L ene, ug/L	12/13/97 12/13/97 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
	ifluorotoluene Rep., ug/L ifluorotoluene Th., ug/L	50.9 50.0	

Received: 03 DEC 97

Ms. Gabriele Baader Maness Environmental Services 1101 E. Spring St. Long Beach, CA 90806

Project: 51298

REPORT OF ANALYTICAL RESULTS

Page 9

Greta Galoustian, Laboratory Director

The analytical results within this report relate only to the specific compounds and samples investigated and may not necessarily reflect other apparently similar material from the same or a similar location.

This report shall not be reproduced, except in full, without the written approval of VOC. No use of this report for promotional or advertising purposes is permitted without prior written VOC approval.

-: ORDER PLACED FOR CLIENT: Maness Environmental Services 9712071: : VOC ANALYTICAL: GLEN LAB: 09:35:19 06 JAN 1998 - P. 1:

GAS.MTBE

VH.8010

VA.8020

9712071*4 MW2-4

SAMPLES... SAMPLE DESCRIPTION.. DETERM...... DATE..... METHOD.... EQUIP. BATCH.. ID.NO **ANALYZED** -9712071*1 R1 GAS.MTBE 12.10.97 8020 536-44 9711164 1030 12.12.97 8010 536-34 973154 8171 VH.8010 VA.8020 12.12.97 8020 536-34 973154 8171 _9712071*2 GAS.MTBE 12.10.97 8020 536-44 9711164 1030 VH.8010 12.12.97 8010 536-34 973154 8171 12.12.97 8020 VA.8020 536-34 973154 8171 9712071*3 MW2-4A GAS.MTBE 12.10.97 8020 536-44 9711164 1030 12.12.97 8010 536-34 VH.8010 973154 8171 12.12.97 8020 536-34 973154 VA.8020 8171

VA.8020 12.13.97 8020 536-34 973154 8171 9712071*5 MW2-3 GAS.MTBE 12.10.97 8020 536-44 9711164 1030 12.13.97 8010 536-34 VH.8010 973154 8171 12.13.97 8020 VA.8020 536-34 973154 8171 9712071*6 T1 GAS.MTBE 12.09.97 8020 536-44 9711164 1030 VH.8010 12.13.97 8010 536-34 973154 8171

12.10.97 8020

12.13.97 8010

12.13.97 8020

536-44 9711164

973154

973154

536-34

536-34

1030

8171

8171

_

Notes: Equipment = VOC Analytical identification number for a particular piece of analytical equipment.

VOC ANALYTICAL, GLENDALE QC REPORT FOR 9712071 DATE PRINTED: 06 JAN 1998

AQUEOUS SAMPLES		METHOD BLA	ANK				LAB	CONTR	0L					i	4ATRI	x QC		-		-
				LC	S	LCSD				RP	D RPD	MS		MSD				1	RPD F	Q95
	STINU	RESULT	RDL FLO	%RE	FLG	%REC	FLG	LCL	UCL	RPD UC	L FLG	%REC	FLG	%REC F	LG	LCL	UCL	RPD 1	UCL F	FLG
Batch: VH*973154 Method: 8010	-	•	rganics		_															
1,1,1-Trichloroethane	ug/L	0	1 -	10.		-	-	61	138	-		-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/L	0	1 -	110		-	-	42	141	-		-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/L	0	1 -			-	-	57	133	-		-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	ug/L	0	1 -			-	-	65	130	-		-	-	-	-	-	-	-	-	-
1,1-Dichloroethene	ug/L	0	0.5 -	10	1 -	-	-	54	138	-		100	-	102	-	50	147	2	27	-
1,2-Dichloroethane	ug/L	0	0.5	- 11	2 -	-	-	64	132	-			-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	ug/L	0	0.5	113	} -	-	-	64	128	-		-	-	-	-	-	-	-	-	-
1,2-Dichloropropane	ug/L	0	0.5 -	109	} -	-	-	53	147	-		_	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	0	1 -	114	1 -	-	-	63	130	-		-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/L	0	1 -	- 11	7 -	-	-	69	133	-		-	-	-	-	-	-	-	-	-
Bromodichloromethane	ug/L	0	0.5	- 11	i -	-	-	70	130	-		-	-	-	-	-	-	-	-	-
Bromomethane	ug/L	0	1 -	110	ĵ -	-	-	39	133	-	- -	-	-	-	-	-	-	-	-	-
Bromoform	ug/L	0	0.5	10	3 -	-	-	53	133	-		-	-	-	-	-	-	-	-	-
Chlorobenzene	ug/L	0	0.5	11.	3 -	-	-	61	135	-		110	-	112	-	61	139	l	19	-
Carbon Tetrachloride	ug/L	0	1 -	10		-	-	64	132	-		-	-	-	-	-	-	-	-	-
Chloroethane	ug/L	0	0.5 -	13	7 –	_	-	46	137	-		-	-	-	-	-	-	-	-	-
Chloroform	ug/L	0	1 -	110	ĵ -	_	_	65	133	-	- -	-	-	-	-	-	-	-	-	-
Chloromethane	ug/L	0	1 -	188	3 Q	-	-	1	160	_		-	-	-	-	-	-	-	-	-
Dibromochloromethane	ug/L	0	0.5 -	108	3 -	-	-	65	127	-		-	-	-	-	_	-	-	-	-
Freon 113	ug/L	0	2 -	108	3 -	-	-	37	152	-		-	-	-	-	-	-	-	-	-
Methylene chloride	ug/L	0	2 -	110) -	-	-	57	137	-		-	-	-	-	-	-	-	-	-
Trichloroethene	ug/L	0	0.5 -	109) -	-	-	63	141	-		111	-	112	-	52	162	1	43	-
Trichlorofluoromethane	ug/L	0	0.5 -	10	7 -	-	-	42	154	-	- -		~	-	-	-	-	-	-	-
Tetrachloroethene	ug/L	0	0.5 -	- 11	3 -	-	-	64	139	-	- -	-	-	-	-	_	-	-	-	-
Vinyl chloride	ug/L	0	0.5	113	2 -	_	-	40	144	~		-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	ug/L	0	0.5	109	-	_	_	63	129	-	- <u>-</u>	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropene	ug/L	0	0.5	11.	} -	-	_	65	132	-	- -	-	-	_	-	-	-	-	-	-
trans-1,2-Dichloroethene	ug/L	0	2 -	10	7 -	-	-	59	139	-		-	-	_	-	-	-	-	-	-
trans-1,3-Dichloropropene	ug/L	0	0.5 -	110) -	-	-	60	130	-		-	-	-	-	-	-	-	-	-
[Bromochloromethane]	Percent	101		100) -	-	-	69	140	-		102	-	99	-	69	140	-	-	-

1		1		-
-	PAGE	2		

VOC ANALYTICAL, GLENDALE QC REPORT FOR 9712071 DATE PRINTED: 06 JAN 1998

AQUEOUS SAMPLES	*****	METHOD BLA	ANK				LAB	CONTR	ROL					-		MATRI	X QC				
				LCS		LCSD					RPD	RPD	MS		MSD		•			RPD I	RPD
	UNITS	RESULT	RDL FLO		FLG	%REC F	LG	LCL	UCL			FLG		FLG	%REC	FLG	LCL	UCL	RPD	UCL	FLG
Batch: VA*973154 Method: 8020 -	- Aromatic Vol	atile Organ	nics																		
1,2-Dichlorobenzene	ug/L	0	0.5 -	103	_	_	_	75	121	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/L	0	0.5 -	104	-	-	-	78	123	-	-	-	_	-	_	-	_	_	_	-	-
1,4-Dichlorobenzene	ug/L	0	0.5 -	105	-	-	_	77	123	-	_	-	-	-	-	-	_	-	-	-	-
Benzene	ug/L	0	0.5 -	106	-	-	-	80	126	-	_	-	104	-	108	-	67	141	4	20	-
Chlorobenzene	ug/L	0	0.5 -	106	_	_	_	80	122	-	_	-	105	-	106	-	67	147	1	25	-
Ethylbenzene	ug/L	0	0.5 -	106	-	_	_	81	122	-	-	-	-	-	_	-	-	_	-	-	-
Toluene	ug/L	0.28	0.5 -	107	-	_	-	81	125	-	-	-	107	-	108	_	74	133	1	21	-
Total Xylene Isomers	ug/L	0.17	1 -	105	_	_	_	84	118	-	-	-	_	_	_	-	_	_	_	_	_
[a,a,a-Trifluorotoluene]	Percent	99		103	-	-	-	77	130	-	-	-	101	-	102	-	77	130	-	-	-
Batch: GAS*9711164 Method: 8020) - Aromatic Vo	olatile Org	ganics																		
Methyl-tert-butylether	ug/L	0	30 -	92	-	_	-	58	147	-	-	-	134	-	135	-	53	177	1	30	-
[a,a,a-Trifluorotoluene]	Percent	118		107	-	_	-	77	130	-	-	-	119	-	118	-	77	130	-	-	-

: SURROGATE RECOVERIES :

METHOD	ANALYTE	ВАТСН	ANALYZED REP	ORTED	TRUE 9	kREC FLAG
9 712071 ³	*1					
8020 8010 3020	a,a,a-Trifluorotoluene Bromochloromethane a,a,a-Trifluorotoluene	973154	12/10/97 12/12/97 12/12/97	54.8 49.6 50.5	50.0 50.0 50.0	110 99 101
9712071	*2				•	
3020 8010 _8020	a,a,a-Trifluorotoluene Bromochloromethane a,a,a-Trifluorotoluene	973154	12/10/97 12/12/97 12/12/97	49.2 51.8 53.6	50.0 50.0 50.0	98 104 107
9712071	*3				÷	
3020 8010 8020	a,a,a-Trifluorotoluene Bromochloromethane a,a,a-Trifluorotoluene	973154	12/10/97 12/12/97 12/12/97	41.1 53.9 52.9	50.0 50.0 50.0	82 108 106
9712071	*4					
8020 8010 8020	a,a,a-Trifluorotoluene Bromochloromethane a,a,a-Trifluorotoluene	973154	12/10/97 12/13/97 12/13/97	54.4 53.7 50.3	50.0 50.0 50.0	109 107 101
 9712071	*5					
3020 3010 3020	a,a,a-Trifluorotoluene Bromochloromethane a,a,a-Trifluorotoluene	973154	12/10/97 12/13/97 12/13/97	50.2 50.4 50.4	50.0 50.0 50.0	100 101 101
9712071 ³	*6					
3020 3010 - 3020	a,a,a-Trifluorotoluene Bromochloromethane a,a,a-Trifluorotoluene	973154	12/09/97 12/13/97 12/13/97	54.5 53.5 50.9	50.0 50.0 50.0	109 107 102

: SURROGATE RECOVERIES : ANALYZED REPORTED TRUE %REC FLAG METHOD ANALYTE BATCH -B712775*1*MB 8015M a,a,a-Trifluorotoluene Re9711164 12/09/97 58.9 50.0 118 3712923*1*MB 8010 Bromoch loromethane 973154 12/12/97 50.7 50.0 101 3712924*1*MB _8020 a,a,a-Trifluorotoluene Re973154 49.7 50.0 99 12/12/97 C7121513*1*LC **-**3015M a,a,a-Trifluorotoluene Re9711164 12/09/97 53.3 50.0 107 C7121513*1*LT 3015M a,a,a-Trifluorotoluene Re9711164 12/09/97 50.0 50.0 100 C7121793*1*LC 3010 Bromoch loromethane 973154 12/12/97 50.0 50.0 100 --C7121793*1*LT 3010 Bromoch loromethane 973154 12/12/97 50.0 50.0 100 77121794*1*LC

12/12/97

12/12/97

51.4

50.0

50.0 103

50.0 100

3020

_3020

07121794*1*LT

a,a,a-Trifluorotoluene Re973154

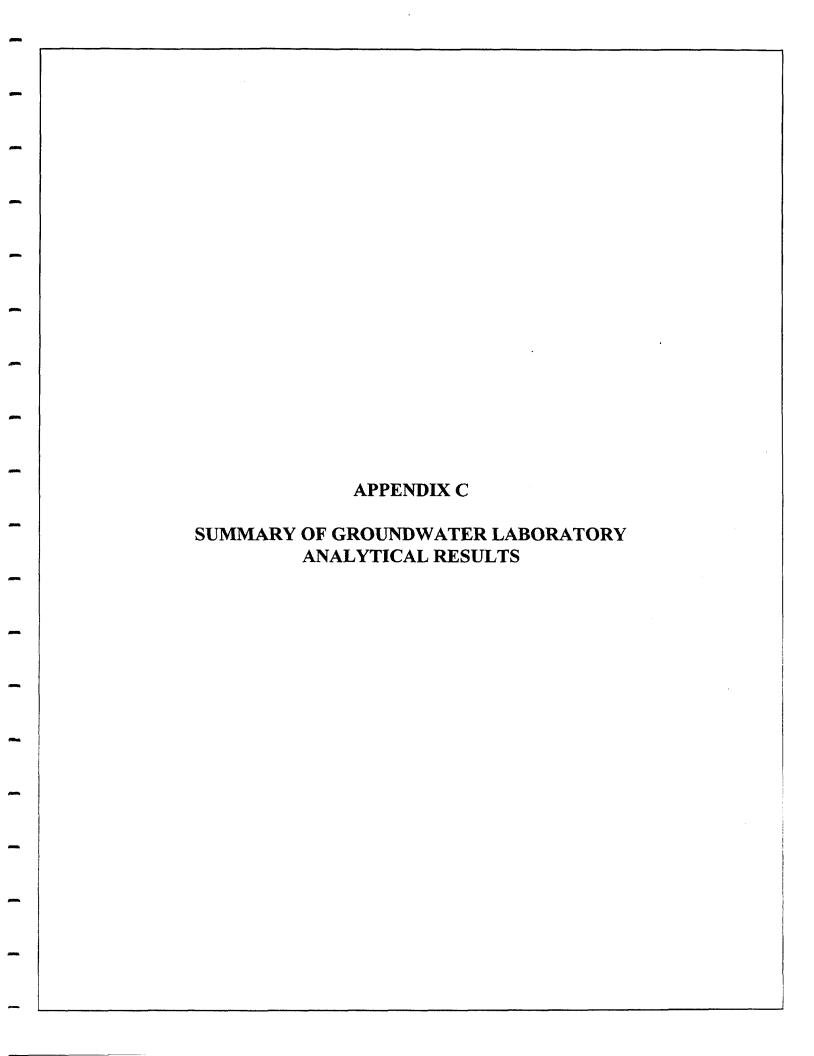
a,a,a-Trifluorotoluene Re973154

VOC Analytical Laboratories

1212 E. KATELLA AVE. ANAHEIM, CA 92805 1085 SHARY CIRCLE

CONCORD, CA 94518

801 WESTERN AVE. GLENDALE, CA 91201


4411 S. BROADWAY Ste. D-1 PHOENIX, AZ 85040

Chain of Custody Record

V.O.C. Log # _____

Quote #_____

om	npany Name Mightons		LAB ANALYSIS															Matrix Codes *							
	ress (LO) (F					Sample														G		und Water		Sludge	
ity	LENS FIACH State	e - A Zij	P	56		рН												\ \{\bar{\chi}{\chi}\}		Z A		ient lyte Free I ite Water	H ₂ O AQ	Aquec	ediment ous queous
ttn	GARRELLE CAA	Fax #	Rec. 10	140		Pres Codes			•									9		D S		king Wate ace Water	r PE	Petrol Other	eum (Please Specify)
roi	ect ne / Number - 7,12,43	PO#				Š	-											Filtered	(5 s		Pre	es Code		(rouse openy)
am	pler e / Signature AACO. Sample Label	⊿ Phon	e #[416,2]	575.1	$q^{\mu} = 0$	Parameters	35.4	133										Ī		Integrity	A- No B- HN	ne	E- H		
#	Sample Label	Collected	Collected	Matrix	#of	a E		(%)								ļ		Field			C- H _z D- Na	so,	1- lo		
	(Client ID)	Date	Time	Code.	Cont	Par		13.17										"	٠ -	_		RE	MARK	S	
_1	k l	17/:147	7930	GW)	5		X	X												ļ		•v !	· : -,	21	9102 O
2			1200								-									1.	7.41		$A + \tau{+}$		MOZ-Y
_3	MUJ2-411		0000		3															-	د در دور ۱	<u> </u>	N2[7]	,	$(\mu) \leq G$
_4	MWZ-4		1120		6															٠.		1 141	<u> </u>	٠,٠	(102-4
_5	MW12 3		15.45		(5																. , . , .		10 c A 3	, p	igo 5
	3 71 1		16.30		2		1				-									7	t j e	Į.	. AUK		
_7							,	7																	
8	3																			C)	· F	<u> M.J.a.</u>	r n On	1	Aprigori
_9)																			i	,	744 c	Ϊċ	544	ng E
_0																									
	Short Hold		Ice		Item		1	Relin	quish	ed by			┪──	ate	Tir	ne				eived I			Dat	-	Time
A/C	Y N QC Report Level	<u> Y</u>	COC OK I	nitials		72	/d.j	<u> </u>	7i/				12/	147	170	())92.	j ' ' '	1	4		<u>- () e</u>	-		10:00
.A.T	7. Request RUSH Date required	Other Custody Seals	Y N Temp Lo Control Jo			<i>)//</i>																			

SUMMARY OF GROUNDWATER LABORATORY ANALYTICAL RESULTS EL MONTE OPERABLE UNIT, PARTIAL REMEDIAL INVESTIGATION SAN GABRIEL VALLEY, LOS ANGELES, CALIFORNIA

Analytes	EPA		In	tial Rou	nd		First (Quarter	Sec	ond Qua	rter		Th	ird Quar	ter			
Date Sampled	Method		2/2	20 & 28	/97		5/2	8/97	9/4/97					12/1/97				
		MW	2-3	MW	2-4		MW2-3	MW2-4	MW2-3	MW2-4	Rinsate	MW2-3	MW2-4	MW2-4	Rinsate	Rinsate	Detection Limit	MCL
													before	ļ	before	after	(ppb)	(ppb)
		Original	Dup.	Origina	Dup.	Rinsate							purging		purging	purging		
Benzene	8021A/8020	ND	ND	ND	ND	ND	ND	ND	11	51	31	2.3	ND	3.1	5.2	2.9	0.5	11
Bromodichloromethane	8021A/8010	ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND	ND	ND	1.1_	ND	0.5	Unregulated*
Bromoform	8021A/8010	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	2	ND	0.5	Unregulated*
Chloroform	8021A/8010	1.3	1.2	ND	ND	ND	1.7	ND	0.86	ND	ND	ND	ND	ND	ND	ND	0.5-1.0	Unregulated*
Dibromochlomethane	8021A/8010	ND	ND	ND	ND	0.86	ND	ND	ND	ND	1.6	ND	ND	ND	2.5	ND	0.5	Unregulated*
Ethylbenzene	8021A/8020	ND	ND	ND	ND	ND	2.1	2.2	9.2	22	18	2.5	ND	3	4.2	3	0.5	700
Naphthalene	8021A/8010	ND	ND	ND	ND	ND	ND	ND	6.1	12	9.7	NA	NA	NA	NA	NA	2	Unregulated*
n-Propylbenzene	8021A/8010	ND	ND	ND	ND	ND	ND	ND	ND	2.2	2.1	NA	NA	NA	NA	NA	_ 2	Unregulated*
Toluene	8021A/8020	1.2	1.2	ND	ND	ND	8.8	8.9	8.9	30	21	4.1	ND	5.1	7.5	4.5	0.5	150
Tetrachloroethene	8021A8010	1.1	1.1	ND	ND	ND	1.1	ND	0.65	ND	ND	0.61	ND	ND	ND	ND	0.5	5
Trichloroethene	8021A/8010	ND	ND	ND	ND	ND	8.5	ND	ND	ND	ND	ND	ND ·	ND	ND	ND	0.5	5
1, 2, 4-Trimethylbenzene	8021A/8010	ND	ND	ND	ND	ND	2.3	2.9	12	23	20	NA	NA	NA	NA	NA	2	Unregulated*
1, 3, 5-Trimethylbenzene	8021A/8010	ND	ND	ND	ND	ND	ND	ND	2.4	5.1	3.6	NA	NA	NA	NA	NA	2	Unregulated*
Total Xylenes	8021A/8020	0.95	0.95	ND	ND	ND	12	13	30	71	55	14	ND	16	22	16	0.5	1,750

Notes: MCL= Maximum Contaminant Levels, California Drinking Water Standards, 1994

ppb= parts per billion (μg/L)

Dup = duplicate

ND= not detected at or above laboratory detection limits

NA= not availible bold= above MCL

* = monitoring required, California Drinking Water Standards, 1994

All other analytes are ND at or above laboratory detection limits stated in official laboratory reports